A fractal algorithm shows prime number patterning.

Birke Heeren 1[0000-0001-6731-583X]

! independent researcher, Greifswald, MV, 17489, Germany
info@birkeheeren.de 17. September 2025

Abstract. This article focuses on modeling the deterministic, symbolic, and
fractal patterns underlying prime numbers and their gaps, revealing structured
prime generation beyond traditional statistical distribution theories. We pre-
sent a novel mathematical machine with a novel fractal algorithm for modeling
the pattern of prime numbers and gaps. This framework leverages three fractal
processes with deterministic rules to construct six walksets. Walksets An and
APn act as collectors, Bn and BP, determine prime or composite, Cn starts with
all natural numbers and CP. contains the fractal process with always periodic
patterns. Primes and gaps arise as emergent phenomena within this rule-based
system — proving that this Ansatz holds for all prime numbers and gaps. We call
the machine “Synchronous Factory Automaton” SFA. It was implemented in
Java.
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1 Introduction

The SFA does not merely sieve primes — it grows primes and gaps. Primes emerge as
stable survivors in A, and AP, in a deterministic symbolic landscape. Thus, this work
demonstrates what for 2000 years was thought of impossible. Du Sautoy (2004) “Es
ist unmoglich, fiir eine Liste von Primzahlen vorherzusagen, wann die nichste Prim-
zahl auftauchen wird. Die Liste erscheint chaotisch, zufillig, und es gibt keinerlei
Hinweise, wie man die nidchste Zahl bestimmen konnte.*

(my video: https://www.youtube.com/watch?v=2W10i17g1rdE)

2 Tools

2.1 Walksets

For the SFA it was necessary to define sorted sets, which were coined “walksets” (W)
as a distinction to sets, which are always unsorted. Walksets can be thought of as a
walk on the number ray and are different from intervals, as they only can contain
discrete numbers and symbols. Walksets have direction, they can be empty, they are
written with angle brackets. Infinity is only possible either at the start or end of the
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walkset or otherwise as a periodic or infinite term that encompasses the whole
walkset.

Wempty = <> (1)
W hatural numbers := <1 . 2, ... 00> (2)
Wsymbol pattern 1 := <L, o> =<TL> (3)
Wsymbol pattern 2 - = < LM> (4)
Wsymbol pattern 3 °= < MLMLMM> (5)
Wsymbol pattern 4 := < LMLMMM> (6)
Winﬁnity of natural numbers := < CON> (7)

2.2 Symbols

The symbol L (live) means undetermined whether prime or composite number. The
symbol M (multiple) means composite number and the symbol P (prime) means
prime number. The symbol 1 means the number one which is not a prime number.

2.3 Primorial

The size of the pattern (= width of the sieve = period length) in CP, is calculated by
multiplying all prime numbers up to and including the lower bound (B, BPy) of the
sieve, thus the primorial. This size increases rapidly (Fig. 1).
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Figure 1 Size of the pattern = width of the sieve = period length.

2.4 Algorithms

The fractal algorithm is called FA, and a second implementation of the FA is called
BLOX.



3 SFA with FA

SFA with FA is shown on Fig. 2. These are the first steps:

Astart = <> Bstart =<> Cstart =<1, 2, ... 0> (8)
Al=<> Bi=<1> C1=<2,3, ... 0> (O]
Ay =<1> B2 =<2> C2=<3,4, .. o> (10)
Az =<1,2> B3 =<3> C3=<4,5, ... 0> (11)
As=<1,2,3> B4 =<4> Cs4=<5,6, ... 0> (12)
As=<1,2,3,4> Bs =<5> Cs=<6,7, ... 0> (13)

At the same time, the FA pattern-walksets with symbols are kept synchronized
with the numbers.

APstart = <> BPstart =<> CPstart = <L> (14)
AP =<> BP1 =<1> CP =<L> (15)
APz =<1> BP2 = <P> CP2 = <LM> (16)
AP3 =<1, P> BP; = <P> CP; = <MLMLMM> (17)
APs =<1, P, P> BP4 = <M> CP4 = <LMLMMM> (18)
APs=<1,P,P,M> BPs=<P> CPs =

<MLMMMLMLMMMLMLMMMLMMMMMLMLMMMM> (19)

Start Wlth Astart’ Bstarts Cstarti Apstart’ Bpstarts Cpstart

Step n

l
l

find whether n is prime

l l

update CP, when n is not prime update CP, when n is prime

update A, B,, C,, AP, BP,

Figure 2 SFA with FA



3.1 Update of walkset An-1 to An

The only element of Bn.1 is cut from Bn-1 and pasted into An-1 on the right side. Thus set
An-1 becomes An. At the start Bswrt is an empty walkset. Since there is no element in Bstart
to cut, A1 is an empty walkset.

3.2 Update of walkset Bn-1 to B

The leftmost element of Cn.1 is cut and pasted into Bn.1 left empty by the update of A.
Thus Bn-1 again contains one element, that is the step number and thus becomes Bn. At the
start Bstart s an empty walkset therefore as B is filled for the first time it becomes B1.

3.3 Update of walkset Cn-1 to Cx

The update of walkset C has already taken place during the update of B by cutting the
leftmost element of Cx-1. Thus Cn-1 has become Ch.

3.4 Update of pattern walkset APn-1 to APn

The only element of BPy.1 is cut from BPyn1 and pasted into APx.1. The new element be-
comes the rightmost element to keep AP in match with A. Thus APn.1 becomes APn. At the
start BPstart is an empty walkset. Therefore, AP is an empty walkset, as there is no ele-
ment in BPstart to cut.

3.5 Update of pattern walkset BPn-1 to BPn

The leftmost element of CPx.1 is copied from CPn.1 and pasted into BPn.1 left empty by the
update of AP. Thus BPn-1 again contains one element that is the type of the step number
and thus becomes BPn. At the start BPswrt is an empty walkset, therefore as BPy.; is filled
for the first time it becomes BP1.

3.6 Lemma

The equivalence of cutting in C and moving in CP. Proof:

At step number n =3 CPu: <MLMLMM>

This means: <MLMLMM, MLMLMM, MLMLMM, M... o>
Cutting the first letter leaves: <LMLMM, MLMLMM, MLMLMM, M... co>
This can be rewritten as: <LMLMMM, LMLMMM, LMLMMM, ... o>
At step number n =4 CP, is: <LMLMMM>

3.7 Find whether n is prime.

Element n, that is the step number is contained in Bn. Its type-information is contained in
BP.. In the case that BPn contains the element M then the current step number is not
prime. If BP, contains the element L, then the current step number n is prime.



This is denoted by changing L into P in BPx except for number one which turns L into
symbol 1.

3.8 Update pattern walkset CPn1 to CPn when n is not prime.

Fractal procedure: move.

As can be seen in the description (3.5) "Update of pattern walkset BPn-1 to BPy" the type-
information of step number n is not cut from CPx.1. Instead, this leftmost type-information
is now moved to the rightmost place of the periodic term. Thus CPn.1 becomes CPx (see
lemma).

3.9 Update pattern walkset CPy.1 to CP, when n is prime.

Fractal procedure: move.
The first procedure is the same as for "n is not prime".

Fractal procedure: copy.
The pattern size is increased by copying the pattern and pasting it n-1 times to the right of
itself.

Fractal procedure: change.
The types of all numbers x for which applies
x*nwith (x € N A x>1 A x*n < pattern size, + n)
inside CPy-1 are turned from undetermined L types into M types, unless they are already of
type M. Thus CPx-1 becomes CPn.

4 SFA with FA results

Let us think of the walksets B,, C,, and CP, of SFA as sieves (Fig. 3). The pattern of
all L’s is the envelope (“Hiillkurve” like in physics) of all prime numbers above the
step number n in B,. The pattern of all M’s is the area outside the prime number enve-
lope.
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Figure 3 The sieves of starting state and step n = I to 3.

At first sight the sieves could be mistaken for Eratosthenes sieves, but there are
important differences. The SFA sieves have a lower bound (B,), no upper bound and
consist of vertical columns, which can be described by linear equations. The L col-
umns contain not only prime numbers but also composite numbers, therefore they are
envelopes to prime numbers.

4.1 Proof

The stringent logic of the algorithm is proof. The algorithm was implemented in Java.
We are professionals in science and computer science and want to pass the baton on
this to the higher mathematicians.

4.2 Prime number envelops — L-columns.

All envelope equations come directly from the SFA sieves Fig. 3.

At step number n = 1 the L column starts with 2 and then 3, 4, 5, to infinity. This
leads to the trivial prime number envelope equation with x € Ny

f(x)=1x+2 (20)

Fig. 3 at step number 2 the L column starts with 3, the width of the sieve is 2 this
leads to the envelope equation with x € Ny
f(x)=2x+3 (21)

Fig. 3 at step number 3 the L columns start with 5 and 7, the width of the sieve is 6
this leads to a family of prime number envelope equations with x € No.



f(x)=6x+5 (22)
f(x)=6x+7 (23)

Followed by an even larger family of equations for step number n = 5 envelope (no
Fig.) with x € No.
“Eq. 22” spawns:

f(x)=30x+11 24)
f(x)=30x+17 (25)
f(x)=30x+23 (26)
f(x)=30x+29 (27)
“Eq. 23” spawns:

f(x)=30x+7 (28)
f(x)=30x+13 (29)
f(x)=30x+19 (30)
f(x)=30x+31 (31)

The size of the sieves increases from step to step with n primorial (Fig. 1). Also,
for each following step of the SFA with FA the number of prime number envelope
equations increases rapidly (Fig. 4).

families of envelope equations
fix) on log scale

10000

sieve width =210

1000

sieve width = 30

sieve width =6

Figure 4  Families of envelope equations on logio scale with x € Ny

For each prime number the envelopes can be determined. For example, prime
number 193877777 belongs to envelopes with x € No.

f(x)=1x+2 (32)
f(x)=2x+3 (33)



f(x)=6x+5 (34)

f(x)=30x+17 (35)
f(x)=210x+107 (36)
f(x)=2310x+1787 (37)

4.3 Composites — M-columns

All the M columns by the logic of the FA contain only composite numbers (gaps).

4.4 Hypotheses

The following equations (we call them latisses, 38 to 75) are hypothesized with x €
No. With each step of the FA the number of latisses equations increases rapidly.

6x,1t7 = 6x2+5 * 6x3+5 (38)

6x,1t7 = 6x2+7 * 6x3+7 (39)

6x;15 = 6x21+5 * 6x3+7 (40)

30x;+7 = 30x,+7 * 30x3+31 41)
30x;+7 =30x+11 * 30x3+17 (42)
30x;+7 = 30x,+13 * 30x3+19 (43)
30x;+7 = 30x,+23 * 30x3+29 (44)
30x;+13 =30x,+7 * 30x3+19 (45)
30x;+13 =30x>+13 * 30x3+29 (46)
30x:+13 =30x>+17 * 30x3+31 47)
30x;+13 =30x>+19 * 30x3+23 (48)
30x;+19 = 30x,+7 * 30x3+7 (49)
30x;+19 =30x>+11 * 30x3+29 (50)
30x;+19 = 30x>+13 * 30x3+13 (51
30x;+19 =30x>+19 * 30x3+31 (52)
30x;+19 = 30x>+23 * 30x3+23 (53)
30x;+31 = 30x2+7 * 30x3+13 (54)
30x;+31 =30x,+11 * 30x3+11 (55)
30x;+31 =30x>+17 * 30x3+23 (56)
30x;+31 =30x,+19 * 30x3+19 57
30x;+31 = 30x,+29 * 30x3+29 (58)
30x;+31 =30x,+31 * 30x3+31 (59)
30x;+11 =30xx+7 * 30x3+23 (60)
30x;+11 =30xx+11 * 30x3+31 (61)
30x;+11 =30x,+13 * 30x3+17 (62)

30x+11 = 30x2+19 * 30x3+29 (63)



30x,+17 = 30x,+7 * 30x3+11 (64)
30x,+17 = 30x,+13 * 30x3+29 (65)
30x,+17 = 30x,+17 * 30x3+31 (66)
30x,+17 = 30x,+19 * 30x3+23 (67)
30x,+23 = 30x,+7 * 30x3+29 (68)
30x,+23 = 30x,+11 * 30x3+13 (69)
30x,+23 = 30x,+17 * 30x3+19 (70)
30x,+23 = 30x,+23 * 30x3+31 (71)
30x,+29 = 30x,+7 * 30x3+17 (72)
30x;+29 = 30x,+11 * 30x3+19 (73)
30x,+29 = 30x,+13 * 30x3+23 (74)
30x,+29 = 30x,+29 * 30x3+31 (75)
4.5 Trees

A way of visualizing the L- and M-columns is that all L-columns build an L-tree
(Fig. 19), and all M-columns build an M-tree.

5 Prime gaps, three consecutive primes and twin primes

We define letters a, b, ¢ and d.

a := <LMLMMM> (76)
b := <LMMMMM> (77)
¢ := <MMLMMM> (78)
d .= <MMMMMM> (79)

Because step number n is larger than two, with each step only one L of letter a can
be turned to M (Fig. 5).

Figure 5. Letter a can turn into b or c. Letters b and c can turn into
letter d. Letter d cannot change anymore.
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Letter d and clusters of letter d are prime gaps. As the SFA walks from step to step all
prime gaps are multiplied and transferred to the next sieve. Thus, any large prime gap that
was ever discovered will appear repeatedly to infinity and can only become larger.

(80)

It holds true that no matter in which sequence the letters a, b, ¢, and d are arranged it is
impossible to build the pattern of three consecutive primes <LMLML> beyond 3, 5, and 7.

(81

For the twin primes pattern <LML> which appears only in letter a, it can be said that the
density in the natural numbers decreases with each step of the FA, as relatively more “let-
ters a” turn into b, ¢ and ultimately d until blox19 (Fig 6).

In the SFA symbolic framework, “letter a” encodes the twin prime template <LML>.
Only “letter a” can produce twin primes in subsequent sieve steps. If “letter a” were to
vanish beyond some step, only decaying letters b, ¢, and d would remain, possibly leading
eventually to a prime-empty pattern: all letter d — contradicting the known infinitude of
primes. Therefore, the FA probably generates infinitely many letters a. This suggests — in
the context of the model — the existence of plausibly, infinitely many actual twin primes.

Two fractal procedures “copy” and “change” each have different effects on the sym-
bols L and M and therefore on the letters. Procedure “copy” multiplies letter a (the prey).
Procedure “change” (the predator) diminishes “letter a”. This reminds of “predator-prey”
interactions. We hypothesize that the density of letter a comes to a steady state, possibly
with some oscillations.

letters in blox sieves

100% -
90% - letter d
80% -
° letter ¢
o 70% -
3
2 60% -
‘s
0, -
- 50% letter b
g 40% -
&  30% -
20% - letter a
10% -
0%
blox3 | blox5 | blox7 |blox11 |blox13 |blox17 |blox19
Oletterd| © | 0 [006 | 01 [014 017 |01 | Figure 6. How “letter a”
Dletterc | O | 02 | 0261028 | 028 028|028 | (ocregses from sieve to
Olletterb | O | 0.2 | 026 | 0,28 | 028 | 0,28 | 0,28 .
T 06 Toas | om o3 [0z [0z sze.ve and lette;.fs b, ¢ and
d increase -until blox19.

sieves
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6 Factorization of semiprimes

Semiprimes are the product of two prime numbers. Semiprimes up to 12 digits with
similar factor sizes were factorized with an office laptop by making use of latisses and
targeted trial and error to determine the x2 and x3 values of the right-hand side, which can
be computed in parallel. For example, the semi prime 82557089 was found to be of la-
tisses.

6x1+5 = 6x2+5 * 6x3+7 (82)
and

82557089 = (2310*4 + 839) * (2310*3 + 1261) (83)
leading to prime number factors

82557089 = (10079) * (8191) (84)

7 Prime Number candidate production

For using large sieves, the BLOX variant of the FA was developed. Each sieve is a file
that contains only L columns (= L envelope). The computation started with one file at step
n = 3 containing 5 and 7 and ended through successive computation at step n = 29 with
667 files, each containing about 1.6 million L entries in sieve blox29.

The BLOX computation is done by the equivalence of the FA. But the BLOX does not
grow primes, but envelopes of primes, therefore prime candidates, which need to be con-
firmed by the usual primality tests.

The BLOX was implemented in Java, just like the SFA with FA.
From step number n = 3 to n = 5 five copies of the L-columns are made in the follow-

ing way (Fig. 7). The sieve-size of n = 3 that is 6 is used. Five and composites of five are
cut.

5 cut
7 7
5+1*6 =11 11
7+ 1% =13 13
5+2*% =17 17
7+2*% =19 19
5+3*% =23 23
7+3*% =25 cut
5+4%6 =29 29
7+ 4%6 =31 31

Figure 7 blox5
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For blox7 sieve-size of n =5 is used, that is 30. Seven copies are made. 7 and compo-
sites of 7 are cut. And so on and so forth. The BLOX sieves contain all prime numbers in
the range of the sieve and some composite numbers.

With blox29 three cases were considered.

1.) Picking 310-digit prime numbers at random from all natural numbers (0.12% suc-
cess rate) (Fig. 8).

2.) Picking 310-to-312-digit prime numbers at random from inside the envelope with
sieve blox29 (0.90% success rate) (Fig. 9).

3.) Picking 310-to-312-digit prime numbers outside the envelope with blox29, where
no prime numbers in 200,000 picks could be found.

prime number random pick
in natural numbers

25,00
20,00
9
)
» 15,00
[7)]
Q
Q
S 10,00
m )
S
5,00 1
y )
Rt = ®
2 QP 0k N NG
= © SRR
0,00 'FI - ] b
0 100 200 300

prime number size

Figure 8. Prime number random pick in natural numbers for prime
sizes 10, 20, 39, 78, 156, 234, and 310, 1000 picks each with standard
deviation.

The picking of large, here 310-to-312-digit prime candidates is done the following
way. A large sieve size 743 primorial was used which has 310 digits (= sieve size). A
number from the blox29 picked at random (= L) is used and a random integer factor be-
tween 0 and 99 (= x). The formula for the prime candidate is:
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prime candidate = sievesize743 * x + Lblox29 (85)

Because sievesize743 (85) contains factor 29 primorial, the prime candidate is picked
out of an L column of blox29, thus inside the envelope of blox29. For limits of computa-
tion resources, x factors were kept to the small range of between 0 and 99.

prime number random pick
inside envelope of blox29
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+
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Figure 9 Prime number random pick in envelope blox29, for sieve-
sizes 10, 20, 39, 78, 156, 234, and 310, 1000 picks each with standard

deviation.

8 The composites in the prime envelopes

For envelopes equations (22) and (23) the composites follow a simple emergence law,
which is an algorithm, Fig. 10 and Fig. 11. In Fig. 10 it starts f(x)=6x+5 with x = 0 f(x)=5.
Now every 5th number is a composite. The first composite is 35 = 5*7. From this point on
every 7th number is a composite, too. The next composite on Fig. 10 is 65=5*%13. From
this point on every 13th number is composite, too. The next composite is 77=7*11. From
this point on every 11th number is a composite, too. It is hypothesized that this goes on
and so forth.
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On Fig. 11 it starts f(x)=6x+7 with x = 0 f(x)=7. Now every 7th number is a compo-
site. In logic with latisses (38) and (39) the first composite comes from 25=5*5. From this
point on every 5th number in the envelope is a composite. The next composite is 49=7*7,
nothing happens, because we already got every 7th pattern. But the next composite is
55=5*11. From this point on every 11th number is a composite, too. It is hypothesized that
this goes on and so forth.

The emergence law of composites inside the envelopes very much reminds us of the
emergence law of composites in all natural numbers. But the order of prime numbers ap-
pearing is different. On Fig. 10 it is: 5, 7, 13, 11, 19, 17, 31, 23, 37, 29, 43. On Fig. 11 it
is:7,5,11, 17,13, 23, 19, 29, 41, 31, 37.

S T 13 (MM 18 17x (3% 23w 3Tx 20x 43x

17
23
a2
57 35 35
41 H
47 47
53 53
59 59
513 65 65 65
1 71 T
711 wooTTdr a7

83 83 83 83

5+19 85 85 85 95 &5

101 104 10 10 10

107 107 107 107 107

113 113 113 113 113
7T 119 115 119 119 118 115
5*5*5 125 125 125 125 125 125

131 131 131 131 131 13

137 137 137 137 137 137
11#13 | 143 143 143 143 143 143

149 149 149 149 149 145
531 155 155 135 155 155 155 135
723 161 161 161 161 161 161 161 161

173 173 173 173 173 173 173 173
179 179 179 179 179 179 179 179
5:37 | 185 185 185 185 185 185 185 185 185
191 191 191 191 191 191 191 191 19
197 187 197 197 197 197 197 197 197
7:20 | 203 203 203 203 203 203 203 203 203 203 .
11*19 | 209 209 209 209 209 209 209 209 209 209 Flgure 10 The emergence Of
£+43 215 215 215 215 215 215 215 215 215 215 218 composites in envelope 6x+5 up to
1397 [ 221 221 221221 221 221221 21 21 221 211 )@ ]

233 233 233 233 233 233 233 233 233 233 233
239 239 239 239 239 239 239 239 239 239 239
ST 245 245 245 245 245 245 245 245 245 245 245
251 251 251 251 251 251 251 251 251 251 251
257 257 257 257 257 257 257 257 257 257 257

551 275 275 275 275 275 275 275 275 275 275 275
281 281 281 281 281 281 281 281 281 281 281




Figure 11 The emergence of composites in envelope 6x+7 up to 283.

15
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9 Relationship of the sieves to “Uhrenrechner”

Figure 12 CP, and C, as concentric circles like a “Uhrenrechner”

10 How the algorithm developed

The algorithm was originally developed in the year 2007 on paper strips with ideas coming
from wave equations.

Figure 13 This was the first paper strip.

All multiples (M) of prime number two knock out the even composites (Fig. 13). All une-
ven numbers still live (L) and only in L there can be prime numbers. Please compare Fig.
13 with Fig. 3. Our question was: If we set our game piece on number three (L) how long
does the paper strip has to be, to show the pattern for all natural numbers greater than 3?
To us it was like the wave equations. If you overlay two waves the resulting pattern is the
first wavelength times the second wavelength, which we learned in school. Here it is
wavelength 2 times wavelength 3 equals 6 letters (Fig. 14). We quickly noticed that num-
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ber three had turned prime and was not part of the pattern any longer. And that number
three turns number nine inside the pattern from L to M (Fig. 14).

Figure 14 Second paper strip.

Figure 15 Third paper strip.

Then we mentally set our game piece to number four. We noticed that the pattern does not
change but moves one step, since number four is an M, see Fig. 14 and 15.

This was how we got the idea of moving (Fig.16) through the natural numbers. We made
paper strips of length 30 and 210 and worked out, if you start with a single L how the rules
must be defined. The beauty of how all natural numbers are governed by periodic patterns
lay before us in the year 2007.

Fig. 16 FA
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11  Fractal Dimension of L’s in CPn

fractal dimension

x D from SFA, box counting oD from files, box counting # D like Cantor dust
1
| =)
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| x 0000
08 | L 1]
| K x x
y
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06 | [3 é
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04 ¥ é
03 |
02 |
0.1 |
0 L ]
1 10 100

step number

Fig. 17 SFA with FA. The fractal dimension of the L’s in CP,.

The structure of CPy is fractal (Fig. 17). First, the fractal dimension was calculated from
the current SFA with FA. Second, the fractal dimension was calculated from files from a
previous implementation of SFA with FA from 2024. Third, the fractal dimension was
calculated like Cantor dust.

The fractal dimension (85) from the current implementation of 2025 was identical to
the results from Files from 2024 from step number 2 to 17. To look at larger sieves, partial
sieves of CPn were created, but the fractal dimension was skewed (no Fig.).

D = Z?.:] (log(]/ﬁ-;)—lc)g(l /e))(log N(e;)—log N(€))
S (log(1/e)—Tog(1/e))

(85)
11.1 Cantor dust

The Ls are the segments in this Cantor dust. When an L is swapped for an M, it means
deleting a segment (86 to 108) (Zeitler & Pagon, 2000). Step number n, CPs, segments,
fractal dimension d:

1)L [0, 1] de=In1/Inl = NaN (86)
2) LL=>LM [0, %] de=In1/In2 = 0 (87)
3.) MLMLML => MLMLMM [1/6,2/6] [3/6,4/6] d=In2/In6=0,387  (88)
4.) LMLMMM [0, 1/6] [2/6,3/6] d=In2/In6=0,387  (89)

5.) 8 Ls from 30 symbols dc=In8/In30 = 0,611 (90)
6.) 8 Ls from 30 symbols dc=In8/In30 = 0,611 1
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7.) 48 Ls from 210 symbols dc=In48/In210 = 0,724 92)
8.) 48 Ls from 210 symbols dc=In48/In210 = 0,724 93)
9.) 48 Ls from 210 symbols dc=In48/In210 = 0,724 94)
10.) 48 Ls from 210 symbols dc=In48/In210 = 0,724 95)
11.) 480 Ls from 2310 symbols de=1n480/In2310 = 0,797 (96)
12.) 480 Ls from 2310 symbols de=1n480/In2310 = 0,797 o7
13.) 5760 Ls from 30030 symbols dc=In5760/1n30030 = 0,840 (98)
14.) 5760 Ls from 30030 symbols dc=In5760/1n30030 = 0,840 99)
15.) 5760 Ls from 30030 symbols de=In5760/1n30030 = 0,840 (100)
16.) 5760 Ls from 30030 symbols de=In5760/1n30030 = 0,840 (101)
17.) 92160 Ls from 510510 symbols de=1n92160/I1n510510=0,870  (102)
18.) 92160 Ls from 510510 symbols de=1n92160/I1n510510 = 0,870  (103)

19.) 1658880 Ls from 9699690 symbols de=In1658880/1n9699690 = 0,890  (104)
20.) 1658880 Ls from 9699690 symbols de=In1658880/1n9699690 = 0,890  (105)
21.) 1658880 Ls from 9699690 symbols de=In1658880/1n9699690 = 0,890  (106)
22.) 1658880 Ls from 9699690 symbols de=In1658880/1n9699690 = 0,890  (107)
23.) 36495360 Ls from 223092870 symbols dc=In36495360/In223092870 = 0,906 (108)

The Cantor dust dimension dc closely matches the dimension D from box-counting
(Fig. 17).

Fig.18 shows how the density of Ls decreases and the density of Ms increases.

density of Ls and Msin CPn

el (5% 3 M5

symbols in %

step number n

Fig. 18 Density of Ls and Ms in CP,
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12  Conclusion

This paper presents a fully deterministic framework for modeling prime-number pattern-
ing through symbolic substitution and recursive refinement. The fractal algorithm (FA)
acts as a constructive sieve, growing symbolic structures, whose periodic envelopes en-
code all prime candidates. Rather than randomness, the observed irregularities in primes
and prime gaps arise from high complexity. Every label, envelope, and gap emerge from a
rule-based mechanism operating on walksets — ultimately revealing that primes are the
result of structured, deterministic propagation.

The Synchronous Factory Automaton (SFA) synchronizes numeric progression with
symbolic, fractal pattern dynamics, binding the arithmetic and symbolic realms through
recursive update and envelope growth. This symbolic coordination inaugurates a broader
program in Generative Sieve Methods, wherein primes are not merely filtered but grown
within recursive symbolic architectures.

13 Code

The full Java implementation of the SFA with FA is publicly available at:
https://github.com/cerebrummi/fractalalgorithm.

The Java implementation of counting letters is publicly available at
https://github.com/cerebrummi/letterfa

Java implementation Fig. 19 of the Envelope Equations are publicly available at:
https://github.com/cerebrummi/primeenvelopes

TFA rootLeaf| |
NN Floor
stepnumber Leafi predecessor headnumber
patternSize | 2 |headnumber Floor
[2
1 =—— Floor
<> ArrayList
allaN
s FI
E 7 oor ;
N - o Figure
—— 71 MANGN 19 data
S [ 7 structure
¢ [T 9] Floor
1) Floors with L-Tree ~ L-tree
etc.
Symbol symbol HashMap<String, Leaf> leafs;
Leaf Leaf predecessor Floor int stepnumber;
Integer headNumber int patternSize;

Floor floor


https://github.com/cerebrummi/fractalalgorithm
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14 Outlook

This Outlook is intentionally speculative. It reflects my current intuitions (Marcus du
Sautoy: Die Musik der Primzahlen) and hypotheses rather than a survey of the literature.
The SFA touches many areas of mathematics and probably is a crossroads to link different
areas of mathematics.

The fractal algorithm and symbolic machine introduced here provide a deterministic model
that reimagines prime number generation. While the current approach yields exhaustive
coverage and constructivist propagation, many avenues remain open for exploration:

1. Formal proof of the content of this paper with higher mathematics.

2. Limit Behavior of Twin Primes: As symbolic density decreases with each FA
step, the long-term behavior of patterns like <LML> (twin primes) remains un-
known. Future studies could determine whether such patterns vanish in the infi-
nite limit or stabilize.

3. Prime Gaps and Cluster Structure: The recursive multiplication of gap-
encoding letters (e.g. d) shows that prime gaps follow symbolic propagation
rules. Analyzing these rules could lead to deterministic characterizations of large
gaps.

4. Connections to Goldbach’s Conjecture: The M-column in sieve step n = 2
identifies precisely the even numbers > 4 for which the full Goldbach conjecture
must be verified. This symbolic encoding offers a new perspective: rather than
checking arbitrary sums, one could study how these composites emerge structur-
ally across envelopes, potentially revealing deterministic pathways to decompo-
sition.

5. Symbolic Factorization and Cryptographic Relevance: Successful factoriza-
tion of semiprimes using structured latisses opens the door to algorithmic sieving
methods for secure key analysis. Scaling such techniques may challenge assump-
tions in modern cryptosystems.

6. Mathematical Determinism and Complexity: The displacement of probabilistic
intuition by deterministic recursive symbolic rules invites philosophical and the-
oretical reconsideration of randomness in number theory. This Ansatz challenges
the narrative that prime gaps must arise from statistical behavior.

Riemann Hypothesis: It is more likely now that it proofs correct.

8. Chaos theory and symbolic fractals: The recursive envelope dynamics exhibit
hallmarks of chaotic systems — self-similarity, and emergent structure. Model-
ing the FA as a nonlinear dynamical system could reveal bifurcations or attrac-
tor-like regimes in prime gap propagation. Future work might compare fractal
dimensions of letter-cluster distributions across sieve steps.

9. Predator-Prey interactions: The L (prey) and the M (predator) interactions by
fractal procedures copy (multiply L) and change (eat L) are open for modelling.
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