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Abstract. This article focuses on modeling the deterministic, symbolic, and 

fractal patterns underlying prime numbers and their gaps, revealing structured 

prime generation beyond traditional statistical distribution theories. We pre-

sent a novel mathematical machine with a novel fractal algorithm for modeling 

the pattern of prime numbers and gaps. This framework leverages three fractal 

processes with deterministic rules to construct six walksets. Walksets An and 

APn act as collectors, Bn and BPn determine prime or composite, Cn starts with 

all natural numbers and CPn contains the fractal process with always periodic 

patterns. Primes and gaps arise as emergent phenomena within this rule-based 

system – proving that this Ansatz holds for all prime numbers and gaps. We call 

the machine “Synchronous Factory Automaton” SFA. It was implemented in 

Java. 
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1 Introduction 

The SFA does not merely sieve primes – it grows primes and gaps. Primes emerge as 

stable survivors in An and APn in a deterministic symbolic landscape. Thus, this work 

demonstrates what for 2000 years was thought of impossible. Du Sautoy (2004) “Es 

ist unmöglich, für eine Liste von Primzahlen vorherzusagen, wann die nächste Prim-

zahl auftauchen wird. Die Liste erscheint chaotisch, zufällig, und es gibt keinerlei 

Hinweise, wie man die nächste Zahl bestimmen könnte.“  

(my video: https://www.youtube.com/watch?v=2W1oi7g1rdE) 

2 Tools 

2.1 Walksets 

For the SFA it was necessary to define sorted sets, which were coined “walksets” (W) 

as a distinction to sets, which are always unsorted. Walksets can be thought of as a 

walk on the number ray and are different from intervals, as they only can contain 

discrete numbers and symbols. Walksets have direction, they can be empty, they are 

written with angle brackets. Infinity is only possible either at the start or end of the 
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walkset or otherwise as a periodic or infinite term that encompasses the whole 

walkset. 

 

Wempty :=  < > (1) 

Wnatural numbers := <1, 2, … > (2) 

Wsymbol pattern 1 := <L, … > = < ‾ L> (3) 

Wsymbol pattern 2 := < ‾ LM> (4) 

Wsymbol pattern 3 := < ‾ MLMLMM> (5) 

Wsymbol pattern 4 := < ‾ LMLMMM> (6) 

Winfinity of natural numbers := < > (7) 

 

2.2 Symbols 

The symbol L (live) means undetermined whether prime or composite number. The 

symbol M (multiple) means composite number and the symbol P (prime) means 

prime number. The symbol 1 means the number one which is not a prime number. 

 

2.3 Primorial 

The size of the pattern (= width of the sieve = period length) in CPn is calculated by 

multiplying all prime numbers up to and including the lower bound (Bn, BPn) of the 

sieve, thus the primorial. This size increases rapidly (Fig. 1). 

 

 

Figure 1 Size of the pattern = width of the sieve = period length. 

 

2.4 Algorithms 

The fractal algorithm is called FA, and a second implementation of the FA is called 

BLOX. 
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3 SFA with FA 

SFA with FA is shown on Fig. 2. These are the first steps: 

 

Astart = < > Bstart =<> Cstart = <1, 2, ... > (8) 

A1 = < > B1 = <1> C1 = <2, 3, ... > (9) 

A2 = <1> B2 = <2> C2 = <3, 4, ... > (10) 

A3 = <1, 2> B3 = <3> C3 = <4, 5, ... > (11) 

A4 = <1, 2, 3>  B4 = <4> C4 = <5, 6, ... > (12) 

A5 = <1, 2, 3, 4> B5 = <5> C5 = <6, 7, ... > (13) 

 

At the same time, the FA pattern-walksets with symbols are kept synchronized 

with the numbers. 

 

APstart = < > BPstart =< > CPstart = <‾L> (14) 

AP1 = < > BP1 = <1> CP1 = <‾L> (15) 

AP2 = <1> BP2 = <P> CP2 = <‾LM> (16) 

AP3 = <1, P> BP3 = <P> CP3 = <‾MLMLMM> (17) 

AP4 = <1, P, P> BP4 = <M> CP4 = <‾LMLMMM> (18) 

AP5 = <1, P, P, M> BP5 = <P> CP5 = 

<‾MLMMMLMLMMMLMLMMMLMMMMMLMLMMMM> (19) 

 

Figure 2  SFA with FA 
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3.1 Update of walkset An-1 to An 

The only element of Bn-1 is cut from Bn-1 and pasted into An-1 on the right side. Thus set 

An-1 becomes An. At the start Bstart is an empty walkset. Since there is no element in Bstart 

to cut, A1 is an empty walkset. 

 

3.2 Update of walkset Bn-1 to Bn 

The leftmost element of Cn-1 is cut and pasted into Bn-1 left empty by the update of A. 

Thus Bn-1 again contains one element, that is the step number and thus becomes Bn. At the 

start Bstart is an empty walkset therefore as B is filled for the first time it becomes B1. 

 

3.3 Update of walkset Cn-1 to Cn 

The update of walkset C has already taken place during the update of B by cutting the 

leftmost element of Cn-1. Thus Cn-1 has become Cn. 

 

3.4 Update of pattern walkset APn-1 to APn 

The only element of BPn-1 is cut from BPn-1 and pasted into APn-1. The new element be-

comes the rightmost element to keep AP in match with A. Thus AP n-1 becomes APn. At the 

start BPstart is an empty walkset. Therefore, AP1 is an empty walkset, as there is no ele-

ment in BPstart to cut. 

 

3.5 Update of pattern walkset BPn-1 to BPn 

The leftmost element of CPn-1 is copied from CPn-1 and pasted into BPn-1 left empty by the 

update of AP. Thus BPn-1 again contains one element that is the type of the step number 

and thus becomes BPn. At the start BPstart is an empty walkset, therefore as BPn-1 is filled 

for the first time it becomes BP1. 

 

3.6 Lemma 

The equivalence of cutting in C and moving in CP. Proof: 

 

At step number n = 3 CPn:     <‾MLMLMM>   

This means:       <MLMLMM, MLMLMM, MLMLMM, M... > 

Cutting the first letter leaves:     <LMLMM, MLMLMM, MLMLMM, M... >  

This can be rewritten as:       <LMLMMM, LMLMMM, LMLMMM, ... >  

At step number n = 4 CPn is:     <‾LMLMMM> 

 

3.7 Find whether n is prime. 

Element n, that is the step number is contained in Bn. Its type-information is contained in 

BPn. In the case that BPn contains the element M then the current step number is not 

prime. If BPn contains the element L, then the current step number n is prime.  
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This is denoted by changing L into P in BPn except for number one which turns L into 

symbol 1. 

 

3.8 Update pattern walkset CPn-1 to CPn when n is not prime. 

Fractal procedure: move. 

As can be seen in the description (3.5) "Update of pattern walkset BPn-1 to BPn" the type-

information of step number n is not cut from CPn-1. Instead, this leftmost type-information 

is now moved to the rightmost place of the periodic term. Thus CPn-1 becomes CPn (see 

lemma). 

 

3.9 Update pattern walkset CPn-1 to CPn when n is prime. 

Fractal procedure: move. 

The first procedure is the same as for "n is not prime". 

Fractal procedure: copy. 

The pattern size is increased by copying the pattern and pasting it n -1 times to the right of 

itself. 

Fractal procedure: change. 

The types of all numbers x for which applies 

x*n with (x  N    x > 1   x*n  pattern sizen + n)  

inside CPn-1 are turned from undetermined L types into M types, unless they are already of 

type M. Thus CPn-1 becomes CPn. 

4 SFA with FA results 

Let us think of the walksets Bn, Cn, and CPn of SFA as sieves (Fig. 3). The pattern of 

all L’s is the envelope (“Hüllkurve” like in physics) of all prime numbers above the 

step number n in Bn. The pattern of all M’s is the area outside the prime number enve-

lope. 
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Figure 3 The sieves of starting state and step n = 1 to 3. 

At first sight the sieves could be mistaken for Eratosthenes sieves, but there are 

important differences. The SFA sieves have a lower bound (Bn), no upper bound and 

consist of vertical columns, which can be described by linear equations. The L col-

umns contain not only prime numbers but also composite numbers, therefore they are 

envelopes to prime numbers. 

 

4.1 Proof 

The stringent logic of the algorithm is proof. The algorithm was implemented in Java. 

We are professionals in science and computer science and want to pass the baton on 

this to the higher mathematicians. 

 

 

4.2 Prime number envelops – L-columns. 

All envelope equations come directly from the SFA sieves Fig. 3.  

At step number n = 1 the L column starts with 2 and then 3, 4, 5, to infinity. This 

leads to the trivial prime number envelope equation with x  N0  

 f(x)=1x+2 (20) 

 

Fig. 3 at step number 2 the L column starts with 3, the width of the sieve is 2 this 

leads to the envelope equation with x  N0 

f(x)=2x+3 (21) 

 

Fig. 3 at step number 3 the L columns start with 5 and 7, the width of the sieve is 6 

this leads to a family of prime number envelope equations with x  N0. 

                                                                                                
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f(x)=6x+5 (22) 

f(x)=6x+7 (23) 

 

Followed by an even larger family of equations for step number n = 5 envelope (no 

Fig.) with x  N0.  

“Eq. 22” spawns: 

f(x)=30x+11 (24) 

f(x)=30x+17 (25) 

f(x)=30x+23 (26) 

f(x)=30x+29 (27) 

 

“Eq. 23” spawns: 

f(x)=30x+7 (28) 

f(x)=30x+13 (29) 

f(x)=30x+19 (30) 

f(x)=30x+31 (31) 

 

The size of the sieves increases from step to step with n primorial (Fig. 1). Also, 

for each following step of the SFA with FA the number of prime number envelope 

equations increases rapidly (Fig. 4). 

 

Figure 4  Families of envelope equations on log10 scale with x  N0 

 

For each prime number the envelopes can be determined. For example, prime 

number 193877777 belongs to envelopes with x  N0. 

 

f(x)=1x+2 (32) 

f(x)=2x+3 (33) 
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f(x)=6x+5 (34) 

f(x)=30x+17 (35) 

f(x)=210x+107 (36) 

f(x)=2310x+1787 (37) 

 

 

4.3 Composites – M-columns 

All the M columns by the logic of the FA contain only composite numbers (gaps). 

 

4.4 Hypotheses 

The following equations (we call them latisses, 38 to 75) are hypothesized with x  

N0. With each step of the FA the number of latisses equations increases rapidly. 

 

6x1+7 = 6x2+5 * 6x3+5 (38) 

6x1+7 = 6x2+7 * 6x3+7 (39) 

6x1+5 = 6x2+5 * 6x3+7 (40) 

 

30x1+7 = 30x2+7 * 30x3+31 (41) 

30x1+7 = 30x2+11 * 30x3+17 (42) 

30x1+7 = 30x2+13 * 30x3+19 (43) 

30x1+7 = 30x2+23 * 30x3+29 (44) 

 

30x1+13 = 30x2+7 * 30x3+19 (45) 

30x1+13 = 30x2+13 * 30x3+29 (46) 

30x1+13 = 30x2+17 * 30x3+31 (47) 

30x1+13 = 30x2+19 * 30x3+23 (48) 

 

30x1+19 = 30x2+7 * 30x3+7 (49) 

30x1+19 = 30x2+11 * 30x3+29 (50) 

30x1+19 = 30x2+13 * 30x3+13 (51) 

30x1+19 = 30x2+19 * 30x3+31 (52) 

30x1+19 = 30x2+23 * 30x3+23 (53) 

 

30x1+31 = 30x2+7 * 30x3+13 (54) 

30x1+31 = 30x2+11 * 30x3+11 (55) 

30x1+31 = 30x2+17 * 30x3+23 (56) 

30x1+31 = 30x2+19 * 30x3+19 (57) 

30x1+31 = 30x2+29 * 30x3+29 (58) 

30x1+31 = 30x2+31 * 30x3+31 (59) 

 

30x1+11 = 30x2+7 * 30x3+23 (60) 

30x1+11 = 30x2+11 * 30x3+31 (61) 

30x1+11 = 30x2+13 * 30x3+17 (62) 

30x1+11 = 30x2+19 * 30x3+29 (63) 
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30x1+17 = 30x2+7 * 30x3+11 (64) 

30x1+17 = 30x2+13 * 30x3+29 (65) 

30x1+17 = 30x2+17 * 30x3+31 (66) 

30x1+17 = 30x2+19 * 30x3+23 (67) 

 

30x1+23 = 30x2+7 * 30x3+29 (68) 

30x1+23 = 30x2+11 * 30x3+13 (69) 

30x1+23 = 30x2+17 * 30x3+19 (70) 

30x1+23 = 30x2+23 * 30x3+31 (71) 

 

30x1+29 = 30x2+7 * 30x3+17 (72) 

30x1+29 = 30x2+11 * 30x3+19 (73) 

30x1+29 = 30x2+13 * 30x3+23 (74) 

30x1+29 = 30x2+29 * 30x3+31 (75) 

 

4.5 Trees 

A way of visualizing the L- and M-columns is that all L-columns build an L-tree 

(Fig. 19), and all M-columns build an M-tree. 

5 Prime gaps, three consecutive primes and twin primes 

We define letters a, b, c and d. 

a := <LMLMMM> (76) 

b := <LMMMMM> (77) 

c := <MMLMMM> (78) 

d := <MMMMMM> (79) 

 

Because step number n is larger than two, with each step only one L of letter a can 

be turned to M (Fig. 5). 

 

 

 

 

 

 

 

Figure 5. Letter a can turn into b or c. Letters b and c can turn into 

letter d. Letter d cannot change anymore. 
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Letter d and clusters of letter d are prime gaps. As the SFA walks from step to step all 

prime gaps are multiplied and transferred to the next sieve. Thus, any large prime gap that 

was ever discovered will appear repeatedly to infinity and can only become larger.   

 (80) 

 

It holds true that no matter in which sequence the letters a, b, c, and d are arranged it is 

impossible to build the pattern of three consecutive primes <LMLML> beyond 3, 5, and 7.

 (81) 

 

For the twin primes pattern <LML> which appears only in letter a, it can be said that the 

density in the natural numbers decreases with each step of the FA, as relatively more “let-

ters a” turn into b, c and ultimately d until blox19 (Fig 6).  

In the SFA symbolic framework, “letter a” encodes the twin prime template <LML>. 

Only “letter a” can produce twin primes in subsequent sieve steps. If “letter a” were to 

vanish beyond some step, only decaying letters b, c, and d would remain, possibly leading 

eventually to a prime-empty pattern: all letter d — contradicting the known infinitude of 

primes. Therefore, the FA probably generates infinitely many letters a. This suggests — in 

the context of the model — the existence of plausibly, infinitely many actual twin primes.  

Two fractal procedures “copy” and “change” each have different effects on the sym-

bols L and M and therefore on the letters. Procedure “copy” multiplies letter a (the prey). 

Procedure “change” (the predator) diminishes “letter a”. This reminds of “predator -prey” 

interactions. We hypothesize that the density of letter a comes to a steady state, possibly 

with some oscillations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. How “letter a” 

decreases from sieve to 

sieve- and letters b, c and 

d increase -until blox19. 
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6 Factorization of semiprimes 

Semiprimes are the product of two prime numbers. Semiprimes up to 12 digits with 

similar factor sizes were factorized with an office laptop by making use of latisses and 

targeted trial and error to determine the x2 and x3 values of the right-hand side, which can 

be computed in parallel. For example, the semi prime 82557089 was found to be of la-

tisses. 

6x1+5 = 6x2+5 * 6x3+7 (82) 

and  

82557089 = (2310*4 + 839) * (2310*3 + 1261) (83) 

leading to prime number factors 

82557089 = (10079) * (8191) (84) 

7 Prime Number candidate production 

For using large sieves, the BLOX variant of the FA was developed. Each sieve is a file 

that contains only L columns (= L envelope). The computation started with one file at step 

n = 3 containing 5 and 7 and ended through successive computation at step n = 29 with 

667 files, each containing about 1.6 million L entries in sieve blox29.  

 

The BLOX computation is done by the equivalence of the FA. But the BLOX does not 

grow primes, but envelopes of primes, therefore prime candidates, which need to be con-

firmed by the usual primality tests.  

 

The BLOX was implemented in Java, just like the SFA with FA. 

 

From step number n = 3 to n = 5 five copies of the L-columns are made in the follow-

ing way (Fig. 7). The sieve-size of n = 3 that is 6 is used. Five and composites of five are 

cut.  

 

5 cut 

7 7  

5 + 1*6 = 11  11 

7 + 1*6 = 13  13 

5 + 2*6 = 17 17 

7 + 2*6 = 19  19 

5 + 3*6 = 23 23 

7 + 3*6 = 25 cut 

5 + 4*6 = 29 29 

7 + 4*6 = 31 31 

 

Figure 7 blox5 
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For blox7 sieve-size of n = 5 is used, that is 30. Seven copies are made. 7 and compo-

sites of 7 are cut. And so on and so forth. The BLOX sieves contain all prime numbers in 

the range of the sieve and some composite numbers. 

 

With blox29 three cases were considered. 

 

1.)  Picking 310-digit prime numbers at random from all natural numbers (0.12% suc-

cess rate) (Fig. 8). 

2.)  Picking 310-to-312-digit prime numbers at random from inside the envelope with 

sieve blox29 (0.90% success rate) (Fig. 9). 

3.)  Picking 310-to-312-digit prime numbers outside the envelope with blox29, where 

no prime numbers in 200,000 picks could be found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Prime number random pick in natural numbers for prime 

sizes 10, 20, 39, 78, 156, 234, and 310; 1000 picks each with standard 

deviation. 

The picking of large, here 310-to-312-digit prime candidates is done the following 

way. A large sieve size 743 primorial was used which has 310 digits (= sieve size). A 

number from the blox29 picked at random (= L) is used and a random integer factor be-

tween 0 and 99 (= x). The formula for the prime candidate is: 
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prime candidate = sievesize743 * x + Lblox29 (85) 

 

Because sievesize743 (85) contains factor 29 primorial, the prime candidate is picked 

out of an L column of blox29, thus inside the envelope of blox29. For limits of computa-

tion resources, x factors were kept to the small range of between 0 and 99.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Prime number random pick in envelope blox29, for sieve-

sizes 10, 20, 39, 78, 156, 234, and 310; 1000 picks each with standard 

deviation. 

8 The composites in the prime envelopes 

For envelopes equations (22) and (23) the composites follow a simple emergence law, 

which is an algorithm, Fig. 10 and Fig. 11. In Fig. 10 it starts f(x)=6x+5 with x = 0 f(x)=5. 

Now every 5th number is a composite. The first composite is 35 = 5*7. From this point on 

every 7th number is a composite, too. The next composite on Fig. 10 is 65=5*13. From 

this point on every 13th number is composite, too. The next composite is 77=7*11. From 

this point on every 11th number is a composite, too. It is hypothesized that this goes on 

and so forth. 
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On Fig. 11 it starts f(x)=6x+7 with x = 0 f(x)=7. Now every 7th number is a compo-

site. In logic with latisses (38) and (39) the first composite comes from 25=5*5. From this 

point on every 5th number in the envelope is a composite. The next composite is 49=7*7, 

nothing happens, because we already got every 7th pattern. But the next composite is 

55=5*11. From this point on every 11th number is a composite, too. It is hypothesized that 

this goes on and so forth. 

The emergence law of composites inside the envelopes very much reminds us of the 

emergence law of composites in all natural numbers. But the order of prime numbers ap-

pearing is different. On Fig. 10 it is: 5, 7, 13, 11, 19, 17, 31, 23, 37, 29, 43. On Fig. 11 it 

is: 7, 5, 11, 17, 13, 23, 19, 29, 41, 31, 37. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 The emergence of 

composites in envelope 6x+5 up to 

281. 
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Figure 11 The emergence of composites in envelope 6x+7 up to 283. 
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9 Relationship of the sieves to “Uhrenrechner” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 CPn and Cn as concentric circles like a “Uhrenrechner” 

10 How the algorithm developed 

The algorithm was originally developed in the year 2007 on paper strips with ideas coming 

from wave equations.  

 

 

 

 

Figure 13 This was the first paper strip.  

 

All multiples (M) of prime number two knock out the even composites (Fig. 13). All une-

ven numbers still live (L) and only in L there can be prime numbers. Please compare Fig. 

13 with Fig. 3. Our question was: If we set our game piece on number three (L) how long 

does the paper strip has to be, to show the pattern for all natural numbers greater than 3? 

To us it was like the wave equations. If you overlay two waves the resulting pattern is the 

first wavelength times the second wavelength, which we learned in school. Here it is 

wavelength 2 times wavelength 3 equals 6 letters (Fig. 14). We quickly noticed that num-

3 

L 

4 

M 
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ber three had turned prime and was not part of the pattern any longer. And that number 

three turns number nine inside the pattern from L to M (Fig. 14).  

 

 

 

 

 

Figure 14 Second paper strip. 

 

 

 

 

 

Figure 15 Third paper strip. 

 

Then we mentally set our game piece to number four. We noticed that the pattern does not 

change but moves one step, since number four is an M, see Fig. 14 and 15.  

 

This was how we got the idea of moving (Fig.16) through the natural numbers. We made 

paper strips of length 30 and 210 and worked out, if you start with a single L how the rules 

must be defined. The beauty of how all natural numbers are governed by periodic patterns 

lay before us in the year 2007. 

 

Fig. 16  FA 
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11 Fractal Dimension of L’s in CPn 

 

Fig. 17  SFA with FA. The fractal dimension of the L’s in CPn. 

The structure of CPn is fractal (Fig. 17). First, the fractal dimension was calculated from 

the current SFA with FA. Second, the fractal dimension was calculated from files from a 

previous implementation of SFA with FA from 2024. Third, the fractal dimension was 

calculated like Cantor dust. 

The fractal dimension (85) from the current implementation of 2025 was identical to 

the results from Files from 2024 from step number 2 to 17. To look at larger sieves, partial 

sieves of CPn were created, but the fractal dimension was skewed (no Fig.). 

 (85) 

11.1 Cantor dust 

The Ls are the segments in this Cantor dust. When an L is swapped for an M, it means 

deleting a segment (86 to 108) (Zeitler & Pagon, 2000). Step number n, CPn, segments, 

fractal dimension dc: 

1.) L [0, 1]  dc=ln1/ln1 = NaN (86) 

2.) LL => LM [0, ½] dc=ln1/ln2 = 0 (87) 

3.) MLMLML => MLMLMM [1/6, 2/6] [3/6, 4/6] dc=ln2/ln6 = 0,387 (88) 

4.) LMLMMM [0, 1/6] [2/6, 3/6] dc=ln2/ln6 = 0,387 (89) 

5.) 8 Ls from 30 symbols dc=ln8/ln30 = 0,611 (90) 

6.) 8 Ls from 30 symbols dc=ln8/ln30 = 0,611 (91) 
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7.) 48 Ls from 210 symbols dc=ln48/ln210 = 0,724 (92) 

8.) 48 Ls from 210 symbols dc=ln48/ln210 = 0,724 (93) 

9.) 48 Ls from 210 symbols dc=ln48/ln210 = 0,724 (94) 

10.) 48 Ls from 210 symbols dc=ln48/ln210 = 0,724 (95) 

11.) 480 Ls from 2310 symbols dc=ln480/ln2310 = 0,797 (96) 

12.) 480 Ls from 2310 symbols dc=ln480/ln2310 = 0,797 (97) 

13.) 5760 Ls from 30030 symbols dc=ln5760/ln30030 = 0,840 (98) 

14.) 5760 Ls from 30030 symbols dc=ln5760/ln30030 = 0,840 (99) 

15.) 5760 Ls from 30030 symbols dc=ln5760/ln30030 = 0,840 (100) 

16.) 5760 Ls from 30030 symbols dc=ln5760/ln30030 = 0,840 (101) 

17.) 92160 Ls from 510510 symbols dc=ln92160/ln510510 = 0,870 (102) 

18.) 92160 Ls from 510510 symbols dc=ln92160/ln510510 = 0,870 (103) 

19.) 1658880 Ls from 9699690 symbols dc=ln1658880/ln9699690 = 0,890 (104) 

20.) 1658880 Ls from 9699690 symbols dc=ln1658880/ln9699690 = 0,890 (105) 

21.) 1658880 Ls from 9699690 symbols dc=ln1658880/ln9699690 = 0,890 (106) 

22.) 1658880 Ls from 9699690 symbols dc=ln1658880/ln9699690 = 0,890 (107) 

23.) 36495360 Ls from 223092870 symbols dc=ln36495360/ln223092870 = 0,906 (108) 

 

The Cantor dust dimension dc closely matches the dimension D from box-counting 

(Fig. 17).  

 

Fig.18 shows how the density of Ls decreases and the density of Ms increases. 

 

 

 

Fig. 18 Density of Ls and Ms in CPn 
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12 Conclusion 

This paper presents a fully deterministic framework for modeling prime-number pattern-

ing through symbolic substitution and recursive refinement. The fractal algorithm (FA) 

acts as a constructive sieve, growing symbolic structures, whose periodic envelopes en-

code all prime candidates. Rather than randomness, the observed irregularities in primes 

and prime gaps arise from high complexity. Every label, envelope, and gap emerge from a 

rule-based mechanism operating on walksets — ultimately revealing that primes are the 

result of structured, deterministic propagation. 

 

The Synchronous Factory Automaton (SFA) synchronizes numeric progression with 

symbolic, fractal pattern dynamics, binding the arithmetic and symbolic realms through 

recursive update and envelope growth. This symbolic coordination inaugurates a broader 

program in Generative Sieve Methods, wherein primes are not merely filtered but grown 

within recursive symbolic architectures. 

13 Code 

The full Java implementation of the SFA with FA is publicly available at:  

https://github.com/cerebrummi/fractalalgorithm. 

 

The Java implementation of counting letters is publicly available at  

https://github.com/cerebrummi/letterfa 

 

Java implementation Fig. 19 of the Envelope Equations are publicly available at: 

https://github.com/cerebrummi/primeenvelopes 

 

 

 

 

 

 

 

 

 

Figure 
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structure 

L-tree 

https://github.com/cerebrummi/fractalalgorithm
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14 Outlook 

This Outlook is intentionally speculative. It reflects my current intuitions (Marcus du 

Sautoy: Die Musik der Primzahlen) and hypotheses rather than a survey of the literature. 

The SFA touches many areas of mathematics and probably is a crossroads to link different 

areas of mathematics. 

 

The fractal algorithm and symbolic machine introduced here provide a deterministic model 

that reimagines prime number generation. While the current approach yields exhaustive 

coverage and constructivist propagation, many avenues remain open for exploration:  

 

1. Formal proof of the content of this paper with higher mathematics. 

2. Limit Behavior of Twin Primes: As symbolic density decreases with each FA 

step, the long-term behavior of patterns like <LML> (twin primes) remains un-

known. Future studies could determine whether such patterns vanish in the infi-

nite limit or stabilize. 

3. Prime Gaps and Cluster Structure: The recursive multiplication of gap-

encoding letters (e.g. d) shows that prime gaps follow symbolic propagation 

rules. Analyzing these rules could lead to deterministic characterizations of large 

gaps. 

4. Connections to Goldbach’s Conjecture: The M-column in sieve step 𝑛 = 2 

identifies precisely the even numbers ≥ 4 for which the full Goldbach conjecture 

must be verified. This symbolic encoding offers a new perspective: rather than 

checking arbitrary sums, one could study how these composites emerge structur-

ally across envelopes, potentially revealing deterministic pathways to decompo-

sition. 

5. Symbolic Factorization and Cryptographic Relevance: Successful factoriza-

tion of semiprimes using structured latisses opens the door to algorithmic sieving 

methods for secure key analysis. Scaling such techniques may challenge assump-

tions in modern cryptosystems. 

6. Mathematical Determinism and Complexity: The displacement of probabilistic 

intuition by deterministic recursive symbolic rules invites philosophical and the-

oretical reconsideration of randomness in number theory. This Ansatz challenges 

the narrative that prime gaps must arise from statistical behavior.  

7. Riemann Hypothesis: It is more likely now that it proofs correct. 

8. Chaos theory and symbolic fractals: The recursive envelope dynamics exhibit 

hallmarks of chaotic systems — self-similarity, and emergent structure. Model-

ing the FA as a nonlinear dynamical system could reveal bifurcations or attrac-

tor-like regimes in prime gap propagation. Future work might compare fractal 

dimensions of letter-cluster distributions across sieve steps. 

9. Predator-Prey interactions: The L (prey) and the M (predator) interactions by 

fractal procedures copy (multiply L) and change (eat L) are open for modelling.  
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